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ONE FORM OF THE EQUATIONS OF HYDRODYNAMICS OF AN IDEAL INCOMPRESSIBLE FLUID 

AND THE VARIATIONAL PRINCIPLE FOR NONSTEADY FLOW WITH A FREE SURFACE 

Yu. I. Badrukhin and V. V. Kuznetsov UDC 532.5.013.2+532.51.511:519.34+532.531 

In the investigation of nonsteady flows having a free surface there are well-known 
difficulties [I] connected with the formulation of the problems in the traditional statements 
of Euler or Lagrange. 

Using the "Clebsch potentials" X, ~, and % one can write the equations for an ideal in- 
compressible fluid in the form [2, 3] 

Ovi/Oxi = O; (1)  
O~t/Ot + viO~/Oxi = O; (2) 

O~/Ot + v~Os = 0,, (3) 

where the velocity components v i are expressed by the equations 

vi = OxlOx~ + ~.O~tlOx~ (i ----- l,~ 2,. 3). (4) 

Here and later in writing the equations we use the rule of summation over double repeated 
("dummy") indices. 

For the pressure p there is the expression 

o~. ~ v~) (i = 1, 2, 3), (5) 
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where 0 is the fluid density. Here the surfaces of A = const and ~ = const are vortex 
surfaces. 

We change to new independent variables xx, xa, ~, taking X, l, and xa as the unknowns. 
After the corresponding transformations, from (4) we obtain the following expressions for the 
velocity components: 

v~ = azlax, --  :~(azla~ + L) (i = 1,2), us = r + M,: (6) 

Y, q: 

I/Ox3~ 
(i----t, 2); r ~l[O--~- ). I n  place of X, t we introduce the new functions 

7. = ? + ~, ~, = - -aqla~.  (7) 

Then from (6) we obtain 

a av ( i = i , 2 ) ,  v~----a~-~. (8) 

Equations (1)-(3) and (5) in the new variables, with allowance for (7) and (8), take 
the respective forms 

9u i av i Ov 3 a:~"-~. --  r ~ -  + a3 ~ "  = 0 (i = i ,  2); (9) 

a ~  , ~z 3 U = 1, 2); ( 1 0 )  

at\aaj-Fu~-~i~-~)  0 (i = 1,2); ( i i )  

p = - - p  ( " ; '~ l ) - - v s -~-} - ,  ~v~ ( i = 1 , 2 , 3 ) .  (12) 

E q u a t i o n  (10) ( t he  k i n e m a t i c  c o n d i t i o n )  r e q u i r e s  t h a t  f l u i d  p a r t i c l e s  which  i n i t i a l l y  l a y  a t  
t h e  v o r t e x  s u r f a c e  ~ ~ c o n s t  r emain  a t  i t  d u r i n g  the  e n t i r e  t ime  o f  m o t i o n ,  

E q u a t i o n s  ( 9 ) - ( I 1 ) ,  i n  which v i  a re  d e t e r m i n e d  by Eqs.  (8 ) ,  r e p r e s e n t  a sys t em f o r  the  
d e t e r m i n a t i o n  o f  7,  x~ ,  ~.  By combining  EqsQ ( 9 ) - ( 1 ! )  we can o b t a i n  a s y s t e m  o f  s o l v a b l e  
e q u a t i o n s  o f  d i v e r g e n t  form,  which p roves  u s e f u l  i n  t he  n u m e r i c a l  s o l u t i o n  o f  problems [4,  
5 ] .  M u l t i p l y i n g  Eq, (9~ by ~ x ~ f ~ ,  a f t e r  s u b s t i t u t i o n  o f  t h e  v a l u e s  o f  a i o f  (6) we o b t a i n  

__ __ U i a~, ~ ~,~/+~( ~ / = ~  (~=t,2). (13) 

Substituting C!O) Inte (13), we find 

Using (8) and (13), Eq. Cll) can be reduced to t he  form 

a-~ a.~ i \ a~ / = 0 (i = 1, 2), 

(14) 

(.15) 

where p is determined, wlth allowance for (lO), by the expression 

[~ I (v~-  v~) a~ l P = --  P (V + q) + 7 + vavi ~'z~J (i = i,  2). (16) 

It is simple to verify the equivalence of Eqs, (!i) and {15), If we eliminate p from (15) 
using the express4on (16) and sepa.rate eut ef the resulting equation the term 
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a az.~ axs~ ] 
a~ ] ] '  

which is reduced to zero by virtue~of (13), then after substituting the expressions (8) into 
the remaining part of the equation we obtain (ii). Thus, in place of (9)-(11) we have the 
system of solvable equations (13)-(15). 

The proposed form of writing is convenient in the analysis of flows having a free sur- 
face, both potential and vortical, bounded by vortex surfaces with ~ = ~, = const and B = 
~a = const. The introduction of outside forces having a potential offers no difficulty. 
The advantage of the given formulation consists in the fact that the solution of the system 
(13)-(15) is sought in a fixed region of variation of the variables x~, x2, ~. And the re- 
gion of flow is defined physically by Eq. (14). The original system (I)-(3) does not contain 
this equation in explicit form. 

It should be noted that the order of the representation (6) is increased with the help 
of the substitution (7). Since I = ~n/3~, for given ~ and X the functions 7 and ~ can be 
determined with the accuracy of an arbitrary function c1(xl, x~, t). Consequently, the 
arbitrarity in the determination of y and N has no importance for the unique solution of 
the problem. Therefore, one of these functions can be assigned arbitrarily at either boun- 
dary (~ = ~i or ~ = ~), for example, y = 0. 

For the case of the flow of a fluid with a free surface over a stationary bottom the 
boundary conditions at the free surface (p = 0 at ~ = ~2) and at the bottom (xa = f(x,, x2) 
at ~ = ~,) can be written in the adopted variables in the form 

x~ =/(x~,  x.,); 

viOx3/Ox, - -  v3 = 0 (i = t,9-) at ~t = ~tl; 

? = O; 

t O~ 8 ~ = ~ .  

I n  w r i t i n g  t h e  c o n d i t i o n  p = 0 o f  ( 2 0 )  we a l l o w e d  f o r  t h e  c o n d i t i o n  ( 1 9 ) .  

(17) 

(18) 
(19) 

(2o) 

We note that the system (13)-(15) is not formally equivalent to the system (9)-(11). 
In fact, changing from Eqs. (13) and (14) back to (9) and (i0), in place of (i0) we obtain 
the condition 

a-~ \ - ~  + v+ ~ -  v+ = O, 

from which we get 

Ox 8 Ox 3 
0-7 + vi ~ - -  vs = c2 (xl, x~, t). 

Thus, equivalence of the systems requires that c~ ~ 0. In the integration of the 
system (13)-(15) this requirement is automatically satisfied in the assignment of the rela- 
tion (i0) at one of the boundaries ~ = const. In the case of the boundary conditions con- 
sidered above this relation acquires the form of (18). 

We point out that the system (13)-(15) can be obtained directly from Lagrange's equa- 
tions [2, 3] by replacing the two Lagrangian variables by the Eulerian variables x~, xa with 
subsequent use of the substitution (8). In this case it turns out that the remaining Lagran- 
gian variable coincides in meaning with the variable ~ present in our equations. 

This system can also be obtained from the variational principle given in [2]. Trans- 
formed to the variables x,, xa, ~ it takes the form 

5 M  = O, 
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where 

~2 
@28 

t x i x 2 ~1 

Oz8 l 
Ll----~(~+~)--v~+ y v ~  ( i = t , 2 , 3 ) ;  

(21) 

V i are determined by Eqs. (8). Varying the functional (21) with respect to y, n, and x3, 
we obtain Eqs. (13), (14), and (15), respectively. In this case the natural boundary condi- 
tions at the boundary surfaces ~ = ~, and ~ = ~2 are determined as 

~x 3 ] 
~ ( 7 +  ~l)+ . 7 ~ ]  5xs = 0 (i = t ,  2), 

~ ) 

As is seen, the conditions (17)-(20) area particular case of these conditions. 

The authors thank V. V. Pukhnachev for a useful discussion of this problem. 
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