The author is grateful to A. V. Gusev, Yu. M. Lytkin, I. V. Sutrova, and V. A. Sukharev for considerable assistance.

LITERATURE CITED

- 1. V. S. Voitsenya, "Translational motion of a body over an interface between two fluids," Izv. Vyssh. Uchebn. Zaved., Mat., No. 2 (1963).
- 2. I. V. Sturova, "Wave motions in a fluid with discrete stratification during flow around an immersed body," in: Numerical Methods of Continuum Mechanics [in Russian], Vol. 6 (No. 3), Izd. VTs Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1975).
- 3. I. V. Sturova and V. A. Sukharev, "The plane problem of wave motions in a continuously stratified fluid during flow around an immersed body," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4 (1978).
- 4. J. V. Droughton and C. F. Chen, "The channel flow of a density-stratified fluid about immersed bodies," Trans. Am. Soc. Mech. Eng., Ser. D: J. Basic Eng., 94, No. 1 (1972).
- 5. T. I. Gural', O. A. Ershov, A. G. Sorits, and B. A. Fomenko, "Holographic interferometric study of temperature and concentration fields," in: Heat and Mass Transfer [in Russian], Vol. 10, Naukova Dumka, Kiev (1976).
- 6. V. N. Nekrasov, A. M. Trokhan, and Yu. D. Chashechkin, "Generation of internal waves in a plane-layered medium by a uniformly moving hydrodynamic source (three-dimensional problem)," in: Wave Diffraction and Propagation Theory [in Russian], Vol. 3, Moscow (1977).
- 7. A. E. Kochin, I. A. Kibel', and N. V. Roze, Theoretical Fluid Mechanics [in Russian], Part 1, Fizmatgiz, Moscow (1963).
- 8. J. S. Turner, Buoyancy Effects in Fluids, Cambridge Univ. Press (1973).

ONE FORM OF THE EQUATIONS OF HYDRODYNAMICS OF AN IDEAL INCOMPRESSIBLE FLUID AND THE VARIATIONAL PRINCIPLE FOR NONSTEADY FLOW WITH A FREE SURFACE

Yu. I. Badrukhin and V. V. Kuznetsov UDC 532.5.013.2+532.51.511:519.34+532.531

In the investigation of nonsteady flows having a free surface there are well-known difficulties [1] connected with the formulation of the problems in the traditional statements of Euler or Lagrange.

Using the "Clebsch potentials" χ , μ , and λ one can write the equations for an ideal incompressible fluid in the form [2, 3]

$$\partial v_i/\partial x_i = 0; (1)$$

$$\partial \mu / \partial t + v_i \partial \mu / \partial x_i = 0; \tag{2}$$

$$\partial \lambda / \partial t + v_i \partial \lambda / \partial x_i = 0, \tag{3}$$

where the velocity components v_i are expressed by the equations

$$v_i = \partial \chi / \partial x_i + \lambda \partial \mu / \partial x_i \quad (i = 1, 2, 3). \tag{4}$$

Here and later in writing the equations we use the rule of summation over double repeated ("dummy") indices.

For the pressure p there is the expression

$$p = -\rho \left(\frac{\partial \chi}{\partial t} + \lambda \frac{\partial \mu}{\partial t} + \frac{1}{2} v_i^2 \right) \quad (i = 1, 2, 3), \tag{5}$$

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 59-62, January-February, 1980. Original article submitted December 22, 1978.

where ρ is the fluid density. Here the surfaces of λ = const and μ = const are vortex surfaces.

We change to new independent variables x_1 , x_2 , μ , taking χ , λ , and x_3 as the unknowns. After the corresponding transformations, from (4) we obtain the following expressions for the velocity components:

$$v_i = \partial \chi / \partial x_i - \alpha_i (\partial \chi / \partial \mu + \lambda) \quad (i = 1, 2), \quad v_3 = \alpha_3 (\partial \chi / \partial \mu + \lambda), \tag{6}$$

where $\alpha_i = \left(\frac{\partial x_3}{\partial x_i}\right) / \left(\frac{\partial x_3}{\partial \mu}\right)$ (i=1,2); $\alpha_3 = 1 / \left(\frac{\partial x_3}{\partial \mu}\right)$. In place of χ , λ we introduce the new functions γ , η :

$$\chi = \gamma + \eta, \ \lambda = -\partial \eta / \partial \mu. \tag{7}$$

Then from (6) we obtain

$$v_i = \frac{\partial}{\partial x_i} (\gamma + \eta) - \alpha_i \frac{\partial \gamma}{\partial \mu} \quad (i = 1, 2), \quad v_3 = \alpha_3 \frac{\partial \gamma}{\partial \mu}. \tag{8}$$

Equations (1)-(3) and (5) in the new variables, with allowance for (7) and (8), take the respective forms

$$\frac{\partial v_i}{\partial x_i} - \alpha_i \frac{\partial v_i}{\partial \mu} + \alpha_3 \frac{\partial v_3}{\partial \mu} = 0 \quad (i = 1, 2); \tag{9}$$

$$\frac{\partial x_3}{\partial t} + v_i \frac{\partial x_3}{\partial x_i} = v_3 \quad (i = 1, 2); \tag{10}$$

$$\frac{\partial}{\partial t} \left(\frac{\partial \eta}{\partial \mu} \right) + v_i \frac{\partial}{\partial x_i} \left(\frac{\partial \eta}{\partial \mu} \right) = 0 \quad (i = 1, 2); \tag{11}$$

$$p = -\rho \left[\frac{\partial}{\partial t} (\gamma + \eta) - v_3 \frac{\partial x_3}{\partial t} + \frac{1}{2} v_i^2 \right] \quad (i = 1, 2, 3).$$
 (12)

Equation (10) (the kinematic condition) requires that fluid particles which initially lay at the vortex surface μ = const remain at it during the entire time of motion.

Equations (9)-(11), in which v_i are determined by Eqs. (8), represent a system for the determination of γ , x_3 , η . By combining Eqs. (9)-(11) we can obtain a system of solvable equations of divergent form, which proves useful in the numerical solution of problems [4, 5]. Multiplying Eq. (9) by $\partial x_3/\partial \mu$, after substitution of the values of α_i of (6) we obtain

$$\frac{\partial}{\partial \mu} \left(v_3 - v_i \frac{\partial x_3}{\partial x_i} \right) + \frac{\partial}{\partial x_i} \left(v_i \frac{\partial x_3}{\partial \mu} \right) = 0 \quad (i = 1, 2).$$
 (13)

Substituting (10) into (13), we find

$$\frac{\partial}{\partial t} \left(\frac{\partial x_3}{\partial \mu} \right) + \frac{\partial}{\partial x_i} \left(v_i \frac{\partial x_3}{\partial \mu} \right) = 0 \quad (i = 1, 2). \tag{14}$$

Using (8) and (13), Eq. (11) can be reduced to the form

$$\frac{\partial}{\partial \mathbf{u}} \left(\frac{\partial \mathbf{y}}{\partial t} + \frac{\mathbf{p}}{\mathbf{\rho}} \right) + \frac{\partial}{\partial \mathbf{x}_i} \left(v_3 v_i \frac{\partial \mathbf{x}_3}{\partial \mathbf{\mu}} \right) = 0 \quad (i = 1, 2), \tag{15}$$

where p is determined, with allowance for (10), by the expression

$$p = -\rho \left[\frac{\partial}{\partial t} (\gamma + \eta) + \frac{1}{2} \left(v_i^2 - v_3^2 \right) + v_3 v_i \frac{\partial x_3}{\partial x_i} \right] \quad (i = 1, 2).$$
 (16)

It is simple to verify the equivalence of Eqs. (11) and (15). If we eliminate p from (15) using the expression (16) and separate out of the resulting equation the term

$$v_{3}\left[\tfrac{\partial}{\partial\mu}\left(v_{3}-v_{i}\tfrac{\partial x_{3}}{\partial x_{i}}\right)+\tfrac{\partial}{\partial x_{i}}\!\left(v_{i}\tfrac{\partial x_{3}}{\partial\mu}\right)\right]\!,$$

which is reduced to zero by virtue of (13), then after substituting the expressions (8) into the remaining part of the equation we obtain (11). Thus, in place of (9)-(11) we have the system of solvable equations (13)-(15).

The proposed form of writing is convenient in the analysis of flows having a free surface, both potential and vortical, bounded by vortex surfaces with $\mu = \mu_1 = \text{const}$ and $\mu =$ μ_2 = const. The introduction of outside forces having a potential offers no difficulty. The advantage of the given formulation consists in the fact that the solution of the system (13)-(15) is sought in a fixed region of variation of the variables x_1 , x_2 , μ . And the region of flow is defined physically by Eq. (14). The original system (1)-(3) does not contain this equation in explicit form.

It should be noted that the order of the representation (6) is increased with the help of the substitution (7). Since $\lambda = \partial \eta / \partial \mu$, for given λ and χ the functions γ and η can be determined with the accuracy of an arbitrary function $c_1(x_1, x_2, t)$. Consequently, the arbitrarity in the determination of γ and η has no importance for the unique solution of the problem. Therefore, one of these functions can be assigned arbitrarily at either boundary $(\mu = \mu_1 \text{ or } \mu = \mu_2)$, for example, $\gamma = 0$.

For the case of the flow of a fluid with a free surface over a stationary bottom the boundary conditions at the free surface $(p = 0 \text{ at } \mu = \mu_2)$ and at the bottom $(x_3 = f(x_1, x_2))$ at $\mu = \mu_1$) can be written in the adopted variables in the form

$$x_3 = f(x_1, x_2);$$
 (17)

$$v_i \partial x_3 / \partial x_i - v_3 = 0 \ (i = 1, 2) \text{ at } \mu = \mu_1;$$
 (18)
 $\gamma = 0;$ (19)

$$\gamma = 0; \tag{19}$$

$$\frac{\partial \eta}{\partial t} + \frac{1}{2} \left(v_i^2 - v_3^2 \right) + v_3 v_i \frac{\partial x_3}{\partial x_i} = 0 \quad (i = 1, 2) \quad \text{at} \quad \mu = \mu_2.$$
 (20)

In writing the condition p = 0 of (20) we allowed for the condition (19).

We note that the system (13)-(15) is not formally equivalent to the system (9)-(11). In fact, changing from Eqs. (13) and (14) back to (9) and (10), in place of (10) we obtain the condition

$$\frac{\partial}{\partial \mu} \left(\frac{\partial x_3}{\partial t} + v_i \frac{\partial x_3}{\partial x_i} - v_3 \right) = 0,$$

from which we get

$$\frac{\partial x_3}{\partial t} + v_i \frac{\partial x_3}{\partial x_i} - v_3 = c_2(x_1, x_2, t).$$

Thus, equivalence of the systems requires that $c_2 \equiv 0$. In the integration of the system (13)-(15) this requirement is automatically satisfied in the assignment of the relation (10) at one of the boundaries μ = const. In the case of the boundary conditions considered above this relation acquires the form of (18).

We point out that the system (13)-(15) can be obtained directly from Lagrange's equations [2, 3] by replacing the two Lagrangian variables by the Eulerian variables x_1 , x_2 with subsequent use of the substitution (8). In this case it turns out that the remaining Lagrangian variable coincides in meaning with the variable μ present in our equations.

This system can also be obtained from the variational principle given in [2]. Transformed to the variables x_1 , x_2 , μ , it takes the form

$$\delta M=0$$
.

$$M = \int_{t} \int_{x_{1}} \int_{x_{2}} \int_{\mu_{1}}^{\mu_{2}} L \frac{\partial x_{3}}{\partial \mu} d\mu dx_{1} dx_{2} dt;$$

$$L = \frac{\partial}{\partial t} (\gamma + \eta) - v_{3} \frac{\partial x_{3}}{\partial t} + \frac{1}{2} v_{i}^{2} \quad (i = 1, 2, 3);$$

$$(21)$$

 v_i are determined by Eqs. (8). Varying the functional (21) with respect to γ , η , and κ_3 , we obtain Eqs. (13), (14), and (15), respectively. In this case the natural boundary conditions at the boundary surfaces $\mu = \mu_1$ and $\mu = \mu_2$ are determined as

$$\label{eq:continuous_equation} \begin{split} \left[\frac{\partial}{\partial t}\left(\gamma+\eta\right) + \frac{1}{2}\left(v_i^2-v_3^2\right) + v_3v_i\frac{\partial x_3}{\partial x_i}\right]\delta x_3 &= 0 \quad (i=1,2),\\ \left(\frac{\partial x_3}{\partial t} + v_i\frac{\partial x_3}{\partial x_i} - v_3\right)\delta \gamma &= 0 \quad (i=1,2). \end{split}$$

As is seen, the conditions (17)-(20) are a particular case of these conditions.

The authors thank V. V. Pukhnachev for a useful discussion of this problem.

LITERATURE CITED

- 1. R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, Wiley, New York (1967).
- R. L. Seliger and G. B. Whitham, "Variational principles in continuum mechanics," Proc. R. Soc., Ser. A, 305, 1-25 (1968).
- 3. J. Serrin, "Mathematical principles of classical fluid mechanis," in: Handbook of Physics, Vol. 8/1 (1959).
- 4. G. I. Marchuk, Numerical Methods in Weather Forecasting [in Russian], Gidrometeoizdat Leningrad (1967).
- 5. N. N. Yanenko, The Method of Fractional Steps for Solving Multidimensional Problems of Mathematical Physics [in Russian], Nauka, Novosibirsk (1967).